Thursday, 5 July 2018

Measure twice, cut once

It's been too long without a project on the workbench, and I've got a few leftover parts from previous projects. Plus, I happened across some NOS Soviet military-spec 6N1 and 6N2 tubes. It would have been a grave sin of omission not to do something with them.

So, the idea of building a new amplifier took shape. This one doesn't have a new owner waiting for it, but rather I'm making it as a demo unit. Idea being to use it to hopefully drum up a few orders and to test the market to see if I can sell it at a price that recovers the parts cost and makes a profit.

Topology-wise this will be a tried-and-true amp, I'm not breaking any new ground electronically with this one, but I am refining the construction as far as my skills will allow, and hopefully the results at the end will be worth the effort.

So, we're looking at (yet another) EL84 push-pull amp in ultralinear with fixed bias, a split-load phase splitter, preceded by a gain stage, the same active tone control as I've built twice before, and a Phono (RIAA) stage, again the same one as I made before.

This time, however, I've spent a bit of time on the board design. My photosensitive board blanks are 160mm X 100mm, so I decided to see if I could fit the RIAA stage, tone controls, gain and phase splitter stages, all on that board.

Several hours of editing on the PC later, and I had a design which has passed 3 stringent eyeball checks. I am happy to build it and see what happens.

Circuit-wise it's the same as the previous one I made but those were all on separate boards. Also in the Gain stage I've incorporated phase compensation in the NFB both on the cathode and the load resistor.

I'm even using the exact same chassis as the last one. So, the first job was to work out the component placement. 

So, I printed out my PCBs onto paper at 100% size and placed them in the chassis. Then I added the PCBs for the remote control volume, standby, and input selector (thanks Aliexpress!) Finally, the connectors and other things that go inside the case to complete the job. It's all a big jigsaw puzzle, and I find this the easiest way to visualise what the inside of the case will look like, and whether there's anything that'll need re-arranging.



Luckily there's enough room and I don't need to stand anything on its edge. This case only has 50mm height so this is good news.

So the printed board at top left is the RIAA / Amp / Tone Control board. That has 6 tubes on it in two rows of three, with 50mm spacing.
The sockets for the EL84s are next, proceeding clockwise, and the long thin printed board is the bias board. Same design as I've used previously each time.
then we have the volume control which will be mounted to the front panel. Continuing clockwise, this is a cardboard cut-out of the 9V transformer which will supply standby power for the remote control board, giving us the ability to turn the amp on remotely. Then there's the mains relay. 

The 100 X 100mm printed board is the power supply incorporating all the resistors and capacitors and usual power supply things. It also incorporates my usual 555-based startup delay with the driver for the 2-colour LED, like in the previous project. (It turns on red to begin with but then changes to green when the high voltage switches on)

The remaining two boards are the input selector and the driver board for the remote control receiver.

My next job is to score up the case and cut the holes needed, then make up the three boards.

I got tired of using a dish for etching boards, it takes too long and is a bit hit-and-miss. So I bought an etching tank with a heater:



The heater keeps the etchant at the correct temperature and should improve the process. When I get to making these boards, I'll do a video of it to publish here.

More entries as this build progresses...

No comments:

Post a Comment