Saturday, 28 July 2018

Build completed

The EL84 amp is completed and has been removed from the workbench and is now in the living room where it's been entertaining us the past few days.

This one went fairly well, however there were a few problems.

First, a few pretty pictures


This is the best looking amp I've made so far. Great care was taken with centring and spacing.



The translucent hole to the left of the volume control covers the IR detector

About the name

The amplifier is named "Matariki" which is in the Maori language of New Zealand. Literally translated, it means either "Eyes of God" or alternatively "Little Eyes". 

In more common usage, it is the name given to the Pleiades star cluster, when it becomes visible (which is mid-year, mid winter here) and has traditionally become associated with renewal, the Europeans decided to call it the "Maori New Year"

There was also a rare southern right whale which made an unusual appearance in Wellington Harbour recently, during Matariki, and the whale was thus informally named Matariki.
While all this was happening, I was designing this amplifier.
Hence the name





The case is aluminium, sourced from AliExpress, of the type I usually use. The front panel is 8mm thick, brushed aluminium. It required pockets being milled on the CNC from the back to accommodate the controls mounted through it.

The lights are 3mm LEDs but I decided I don't like the bulging appearance they give when pushed through the front panel, so we laser-cut some 2mm clear acrylic into 3mm circles, so the lights on the front could be flat and flush. They press-fitted perfectly and the look was 100% what I was wanting.

The STBY LED is red, and the PWR led is dual-colour, it starts red at power-up and then when the HT switches on after 30 sec, it turns green.

The power switch and input selector are a rotary encoder: push to toggle power, rotate to cycle through the inputs. 


Inside the case


Pic taken with phone under workshop fluorescent lights, sorry for quality!

Inside the chassis there's the amplifier mainboard, which contains 6 tubes and is the phono, tone, gain and phase splitter. To the left of that is the base of the output valves, the long thin board contains the bias and cathode shunt resistors, test points, and on the track side, the four trimmers for adjusting the bias voltage.

The green boards are bought-in components: input selector, mains switch/standby, remote volume, and microcontroller.

The power supply contains the usual array of resistors and capacitors needed to provide the various voltages, as well as the usual 30 sec startup delay timer relay circuit I always use.

The DC voltages provided by the power supply are:

+350V
+300V
+270V
+250V
+6.0V (DC heaters for Phono stage, rectified from the 5vac secondary with Schottky diodes)
-27V for fixed bias

In addition there's the standby transformer which provides 9vac at around 200mA to power the microcontroller and standby board.


Things that went wrong in this build

1. Phase splitter grid current

I have a continuous improvement philosophy in that each build needs to be better than the last. I don't profess perfection in any of these projects, but provided each shows improvement, I am happy.

In this one, I built it essentially to the same circuit as the previous, but owing to finding a supplier of NOS Soviet valves, I changed the circuit replacing the 12AX7 with 6N2 and the 12AU7 with 6N1.

This is where the problems began. The different characteristics of these valves meant that my original choices of operating points and voltages (I like to DC-couple the cathodyne phase-splitter) were wrong. I thought I knew how to work this stuff out, turns out I didn't, and the results on the scope were disappointing.


This was the kind of nonsense I was seeing on the output from the cathodyne


This was the output from the gain stage (yellow) with input inverted, scaled and superimposed (blue)

The initial gain stage was running into clipping quite badly as it went positive. This was disappointing; it meant that I was inducing grid current into the phase splitter and the gain stage couldn't drive it. If I pulled the phase splitter tube the waveform immediately reverted to an undistorted sinewave. Back to the drawing board to figure out what I'd got wrong.

This is how you learn. After some head scratching and calculating, I arrived at a set of voltages and operating points that - while not eliminating this problem - shifted it beyond the range of signal levels that I would need in this amp. So now at 28V p-p it looks like this


Which no doubt purists will jump all over me for, but I can live with it. We're driving EL84s here, so we don't need huge levels.


2. Gain Deficit

So subbing in the 6N2 in place of the 12AX7 resulted in lower overall gain, despite the two having on paper the same µ

The result of this was that when applying 10dB NFB, it was taking something like 1.0 vrms (2.8v p-p) to drive it to full output. On quieter passages of music this meant that even at full volume, it was too quiet.

In the end, I had to reduce the NFB to around 7dB, a figure which according to some is worthless, the advice I had was to try for 20dB but realistically in this amp it would mean adding another gain stage.

This issue is unresolved in that I've left the NFB at 7dB but even at that level, you have to crank the volume control over more than expected. It makes me think twice about building this design again

On the plus side, it sounds absolutely wonderful, and it leaves me asking myself why I really need to add more NFB. Is it to satisfy some purist urge to get to the holy grail 20dB or what? I need to understand more about NFB - in this amp the bass is solid and tight, not flabby at all, and the sound is the purest of any amp I've built so far (to my uneducated 47 year old ears at least)


3. Low voltage timer delay and LED colour reverser circuit

In each of my amps I use the same 555-based startup delay circuit. It's based off a rectified 6.3 volt using a W02 rectifier which then feeds the 555

The output to the power relay is taken from pin 3 of the chip and also this feeds another small DPDT relay which reverses the polarity of the dual-colour LED. Except that this smaller relay when switched on, buzzes like a bumblebee for the first 4 or 5 sec, and I measured its coil voltage, it's only getting 3V which is weird because the 555 is being powered off the rectified 6.3 volt... somewhere there's a ton of voltage drop happening. 
Measured the positive pin of the rectifier, only 5VDC. That was surprising, I'd have expected 7.5 volt, even allowing for the 1.4volt forward voltage drop. Then there's the voltage drop through the 555.
So somehow I need to re-design this circuit for my next amp so that the relay coils are getting 5 volts. This is currently an unresolved, work-in-progress - I'll leave it like this for this one but re-design the circuit for the next one.




Things that went right in this build

This was the first all-on-one-board amp I'd made and it was successful. Everything worked exactly as expected on the first power-up. All the components fitted on the board, the board itself was a success (first project with the new temperature-controlled PCB etching tank) and the board looks fine (although there's no soldermask or silkscreen on it, it really is just single-sided naked copper tracks on FR4)
Likewise for the power supply.

The level of tidiness inside the case is better than anything I've achieved before, although I don't think I'll ever get to the level I am looking for... which is OK, because when you shoot for the moon you're not gonna hit it, but you will end up in the treetops, which is a whole lot better than being on the ground.

The level of aesthetic appeal on this one is better than any of my previous projects as well. I am completely happy with that aspect.

From a technical standpoint, on this build I'd designed the board to allow phase compensation into the NFB loop. This is because NFB produces high-frequency ringing which you can see on the oscilloscope if you put a 10KHz squarewave into the input. At the output you get something like this:


Nasty ringing through the NFB

The prescribed method to resolve this is to phase-compensate the NFB with resistors and capacitors, the values of which are determined by experimentation. After doing this, the 10KHz squarewave output now looks like this


NFB after phase compensation added

Which would again probably prompt some scorn and ridicule from purists, but it represents around a 99.7% improvement, which I am happy with.

Finally, one aspect I am well pleased with is the listening test. Subjectively this is the cleanest sounding amp I have built to date.


Remaining to do

The last steps before I can call this one finished is just to complete the performance measurements. Input sensitivity, Freq response, noise, and THD all need to be measured.

Thereafter, the remaining to-dos are:
  • Fix the Low-voltage 555-based circuit so the relay coils get 5v not 3v (or else just use 3v relays if they exist, that'd be a quick and ugly hack!)
  • Track down and understand the source of the remaining hum in the RIAA stage and modify the next design accordingly
  • Increase the gain so the NFB can be increased
When performance measurements are completed I'll post up the final project page.


Schematic as built

Click to enlarge. Might need to download / Save-As, to be able to read it






Tuesday, 17 July 2018

Advice comes at a cost

This post is a bit of a rant, and also a warning to those embarking on this craft and seeking the advice of experienced or expert designers and builders.

No pictures in this one sorry.

I've debated whether to post this for a while, but recent events have compelled me to.

When I started this blog, I was completely new to designing and building amplifiers and valve gear in general. I was delighted to see all of the resources available on the internet, and I joined one or two of the more popular forums. After sitting and watching for a while, and reading as much as I could, I started posting up a few questions, and a couple of schematics I'd designed, to get some input and opinion from the wise and experienced folks.

The input and opinion I got was not quite what I was expecting or hoping for. In my mind I'd imagined that the experienced folks would be tolerant of – or even welcoming – to the newbie, and take time to give explanations or point to resources to further my understanding.

Instead I was the recipient of sarcasm, scorn and ridicule. Both on the boards, and in private messages. It became quickly apparent to me that the prevailing attitude seemed to be that unless you know all of the common topologies by heart, you have no business even picking up a soldering iron. 

My particular approach has been that I don't want to just find a schematic and build it, I want to understand how it works. I'll only build something I can describe the working of to another person. So I'm gonna ask questions... that's how you learn.

Besides the condescending remarks, another thing I had to contend with was opinion stated as fact. Some examples:

  • "Hammond Sucks. Edcor all the way"
  • "No audio circuit has any business using the 12AU7, it's so non-linear."

So one of the first skills I had to pick up was the ability to discern fact from strongly-held and expressed beliefs.

The next problem I encountered was a peculiar way of offering recommendations. The most recent example was concerning the use of a Constant-Current Source for preamp tubes. This particular recommendation was given to me in an email by another old-timer in a way that implied that any amplifier without a CCS is some kind of useless toy. When I questioned this, my question was taken as a challenge, and I received an insulting and profanity-laden email in return.

Here's the thing, though. If someone tells me I need a CCS - or any other such recommendation - they should expect me to ask why. This is not to challenge or disagree – but rather because I want to know the reasoning. I need to know if this is another opinion-stated-as-fact, or whether there is some basis for the recommendation. I want to know:

  • Why would I need a CCS?
  • What problem does it solve?
  • How bad is that problem?

This helps me build understanding and further my knowledge. I did not profess to be an expert in this area - it remains a hobby which I fit around a career and a family. I do strive to learn something from each project, and make each one better than the last.

To that effect, I have made a decision which I should have made back in 2016 and this is the reason for this longwinded post. From now on, I am receiving my knowledge from books, or the small number of personal sources I trust, and I recommend anyone else starting out do likewise. 

Either that or develop a thick skin against the attitude you're likely to encounter.

For my part, if anyone asks me for my knowledge, I'll happily share it without condescension, such as it is.





Saturday, 14 July 2018

PCB party

The demo amp is taking shape... the chassis is back from laser engraving and milling, the back panel is assembled, and the PCBs have been made.

Some photos for now.


The amp main board.

 About 10 hours design work went into this at the PC in several sessions. Then another hour on the exposure and etching (hooray for the new Etching Tank!) then about two hours on the drill press (I do this all manually and this one has about 346 holes) then about four hours stuffing and soldering.
  • The right-hand third of this board is the phono/RIAA stage. 
  • Bottom half of the left two-thirds is the Active tone controls
  • Top half of the left two-thirds is the gain and phase splitter stages



Flip side

The tubes are at 50mm spacing. As you can see it's a single-sided board. The unfilled holes at the bottom left (in this view) are for the phase correction in the NFB loop. These component values will be determined by experimentation



The total size of this board is 160 X 100mm (or 4" X 6.25" if you insist)


I'm using Soviet military NOS surplus tubes which I found a supply of. So this is configured for 6N1 / 6N2 tubes.


We also have a power supply. This one is a bit of a squeeze because I had a 100 X 100mm cutoff bit of PCB which I thought of using. Ideally it should be bigger but I didn't feel like cutting anything.

The supply contains my usual start-up delay (that's the IC and relay you can see) where the AC power to the rectifier diodes is switched on after about 25 sec, to give the tubes warm-up time. I've also got my usual 2-colour LED driver (it reverses the polarity to the LED when the B+ power comes on, turning the LED from Red to Green. I designed this in the last amp and I liked it, so I bought a few 2-colour LEDs and this can now be a permanent feature in my designs)



Touch the capacitor with blue writing and you'll jump across the room. These are 2 caps of 470µF in series (since they're only rated 250V and my B+ is 330). They have Balancing Resistors.



The cap lying down is too high to fit into the case upright. It's 47000µF at 10V, it's for the DC heater supply for the phono stage. The top right semiconductors are the schottky rectifiers for it (since I'm using the 5V secondary for this, low voltage drop diodes will keep my filament supply within voltage spec)


Loving how clean the tracks are using the new etching tank




Finally there's the chassis. The drilling and punching was done by hand on the top panel, since this is a one-off the setup time on the CNC would have been not worth it. If I am gonna make 5 of these amps then I'll CNC it.

The front panel is adhesive vinyl, laser-cut then peeled, and then there's three coats of clear lacquer to protect the vinyl letters.


Not all of the controls are installed yet.


This one will have a motor-driven remote controlled volume and the input selector is a Rotary Encoder which will cycle through the inputs, with indicator lights to show the selection. The knob will also push to turn the main power on. This is also accessible through the remote control, the perspex window for which is to the left of the volume control.


Around the back

The back panel, nothing especially amazing here. The lettering is laser-etched into the aluminium.

The transformers will be Hammond. 370FX for power and 1650E for OPTs.

More photos as the build progresses.



Thursday, 5 July 2018

Measure twice, cut once

It's been too long without a project on the workbench, and I've got a few leftover parts from previous projects. Plus, I happened across some NOS Soviet military-spec 6N1 and 6N2 tubes. It would have been a grave sin of omission not to do something with them.

So, the idea of building a new amplifier took shape. This one doesn't have a new owner waiting for it, but rather I'm making it as a demo unit. Idea being to use it to hopefully drum up a few orders and to test the market to see if I can sell it at a price that recovers the parts cost and makes a profit.

Topology-wise this will be a tried-and-true amp, I'm not breaking any new ground electronically with this one, but I am refining the construction as far as my skills will allow, and hopefully the results at the end will be worth the effort.

So, we're looking at (yet another) EL84 push-pull amp in ultralinear with fixed bias, a split-load phase splitter, preceded by a gain stage, the same active tone control as I've built twice before, and a Phono (RIAA) stage, again the same one as I made before.

This time, however, I've spent a bit of time on the board design. My photosensitive board blanks are 160mm X 100mm, so I decided to see if I could fit the RIAA stage, tone controls, gain and phase splitter stages, all on that board.

Several hours of editing on the PC later, and I had a design which has passed 3 stringent eyeball checks. I am happy to build it and see what happens.

Circuit-wise it's the same as the previous one I made but those were all on separate boards. Also in the Gain stage I've incorporated phase compensation in the NFB both on the cathode and the load resistor.

I'm even using the exact same chassis as the last one. So, the first job was to work out the component placement. 

So, I printed out my PCBs onto paper at 100% size and placed them in the chassis. Then I added the PCBs for the remote control volume, standby, and input selector (thanks Aliexpress!) Finally, the connectors and other things that go inside the case to complete the job. It's all a big jigsaw puzzle, and I find this the easiest way to visualise what the inside of the case will look like, and whether there's anything that'll need re-arranging.



Luckily there's enough room and I don't need to stand anything on its edge. This case only has 50mm height so this is good news.

So the printed board at top left is the RIAA / Amp / Tone Control board. That has 6 tubes on it in two rows of three, with 50mm spacing.
The sockets for the EL84s are next, proceeding clockwise, and the long thin printed board is the bias board. Same design as I've used previously each time.
then we have the volume control which will be mounted to the front panel. Continuing clockwise, this is a cardboard cut-out of the 9V transformer which will supply standby power for the remote control board, giving us the ability to turn the amp on remotely. Then there's the mains relay. 

The 100 X 100mm printed board is the power supply incorporating all the resistors and capacitors and usual power supply things. It also incorporates my usual 555-based startup delay with the driver for the 2-colour LED, like in the previous project. (It turns on red to begin with but then changes to green when the high voltage switches on)

The remaining two boards are the input selector and the driver board for the remote control receiver.

My next job is to score up the case and cut the holes needed, then make up the three boards.

I got tired of using a dish for etching boards, it takes too long and is a bit hit-and-miss. So I bought an etching tank with a heater:



The heater keeps the etchant at the correct temperature and should improve the process. When I get to making these boards, I'll do a video of it to publish here.

More entries as this build progresses...